欧美一区二区三区……_欧美xxxx18性欧美_国产91热爆ts人妖在线_97超视频免费观看_黄色成人在线免费_97av视频在线_精品亚洲国产成av人片传媒_最新的欧美黄色_国产精品88a∨_日韩成人中文字幕在线观看_成人欧美在线视频_色综合91久久精品中文字幕_国产精品高精视频免费_亚洲一区二区三区香蕉_国产精品女视频_91av在线播放视频

咨詢電話:13699145010
article技術文章
首頁 > 技術文章 > 高分子常規復合材料的摩擦磨損行為

高分子常規復合材料的摩擦磨損行為

更新時間:2024-05-06      點擊次數:1426

近幾十年來,隨著科學技術的發展,人們對材料的使用要求也越來越高,普通的均一單質的材料已經不能滿足不斷增長的多方面的需求。因此它們的應用也受到限制,各種新型的*材料也應運而生。*材料的種類很多,包括以金屬和非金屬材料為基體的具有各種充填物的復合材料。在本書中,我們只介紹*高分子材料。為了改善純高分子材料的力學性能,一般加入增強纖維如玻璃、碳及石棉或纖維編織物,以及各種金屬粉、氧化物等的顆粒填充組成復合型高分子材料。

高分子常規復合材料的摩擦磨損行為

摩擦磨損方面來說,不同填料對高分子材料摩擦磨損性能的改善程度是不同的,其相關機理也不相同,如銅粉、鋁粉、青銅粉等填料主要靠自身的抗蠕變性、抗壓強度、硬度及尺寸穩定性來提高復合材料的耐磨損性能;而鉛粉、石墨、二硫化鉬、氮化硼等填料主要是靠其自潤滑性、熱穩定性、耐化學穩定性的特點來彌補高分子材料的不足;還有一些填料是靠自身的補強性能來提高高分子材料的損性能,如碳纖維、玻璃纖維、織物、晶須等。

由于構成*高分子材料的填料可以起到各種不同的作用,因此選擇合適的方法對其分類在高分子材料摩擦研究領域顯得比較重要,國外有人提出根據填料在材料中所起的兩種作用進行分類:①填料用來改善整體性能;②填料用來改善界面性能。這樣,可以把*高分子材料分成兩類:整體改性材料(在軟質基體中加入硬而強的填料);界面改性材料(在硬而強的基體中加入軟而具有潤滑性的填)。

20世紀90年代,國外有人系統研究了固體潤滑劑、無機填料等對高分子材料摩擦磨損行為的影響。相比無機填料,固體潤滑劑(如聚四氟乙烯、石墨等)可以使摩擦系數磨損率同時降低;其中聚四氟乙烯,而石墨次之。對于金屬填料,其摩擦磨損結果比較復雜,主要依賴于填料和高分子材料的性能。另外,填料對磨損率的影響往往存在一個最佳填充比。有人研究了二硫化鉬、石墨、玻璃纖維、碳纖維等填料對聚四氟乙烯的改性的影響,結果發現填料可使聚四氟乙烯的磨損率降低2個數量級;硬質填料比軟質填料效果要好,但是硬質填料卻使摩擦系數提高。另有研究發現[25,26],液晶材料能明顯改善聚四氟乙烯的耐磨性能,而摩擦系數略有上升。在高溫下熔融的液晶聚合物具有很好的流動性,在合金體系中沿磨損率的空隙向周圍遷移流動形成微纖,在合適的配比下,這些微纖相互連接,在基體內形成致密而均勻的立體網絡,起到了增強作用,從而改善聚四氟乙烯的耐磨損性能。文獻27發現,不同的填料對聚四氟乙烯的磨損性能的影響差別很大(圖5-4),添加Pb?O?Cu、Si?N?填料的PTFE磨損率較小,即此類填料對耐磨性能的改善較好,材料的磨損性能主要與對偶表面的轉移膜的形態有關。巴哈杜爾等研究了CuSPEEK摩擦磨損性能的影響,發現:在單獨加入CuS的條件下,隨著CuS含量的增加,雖然PEEK摩擦系數一直呈穩定的上升趨勢,但是PEEK的耐磨損性能提高了2~3倍。國內有研究者對聚四氟乙烯使用稀土進行改性處理后,基體的磨損率降低了1或2個數量級,研究證明稀土的加入具有細化晶粒和潤滑的作用。

  概括起來說,高分子材料的摩擦磨損行為屬于動態的系統問題,其影響因素涉及載荷、速度、溫度、表面接觸狀態、環境條件等諸多因素。高分子材料具有黏彈性特征以及不良的導熱性和較低的熱穩定性,這些特性將使其摩擦磨性能與廣泛使用的金屬材料明顯不同。另外,高分子材料的分子結構、相對分子質量大小、元素和官能團排列以及填充材料組分、組合、用量比例等也會對材料擦磨損性能產生很大的影響。

高分子常規復合材料的摩擦磨損行為

1.工況條件的影響

高分子材料所涉及的工況條件主要有壓力(P,載荷)、速度(v)及工作溫度(T)等,使用壓力對其性能的影響比較明顯。表5-7給出了常用高分子材料的使用參數??梢钥闯觯翰牧系膹姸仍礁?、剛性越大、摩擦副的減摩自潤滑性能越好,摩擦副的承載能力就越大

有研究者探索了碳纖維(CF)等無機填料增強的聚四氟乙烯材料在低、中、高載荷下的摩擦磨損行為:材料的摩擦系數隨載荷的增大而降低;在低、中載荷下,材料的磨損率變化不大,但在較高載荷下,其磨損率明顯增加。對不同載荷下磨損與變形的相關研究表明,在載荷達到一定極限值之前,材料一直保持相當低的磨損率,而當使用載荷接近或超過此極,材料呈現明顯的磨損。

  速度和溫度對高分子材料承載能力也有很大的影響。通常,在速度增加時,高分子材料相應的承載能力都有不同程度的降低,這主要是由于摩擦功耗及摩擦件熱負荷的增大,將導致表面工作溫度的上升,從而造成表層材料性質變化和摩擦潤滑狀況的劣化所致。另外,隨著環境溫度的提高,在相同的速度、載荷條件下,摩擦副的摩擦磨損性能將顯著降低。需要指出,由于材料特性的差異,溫度對不同高分子材料的承載能力的影響規律各不相同,常溫下聚甲醛和尼龍的壓縮強度遠大于聚四氟乙烯;但隨著溫度的升高,二者的承載能力迅速下降,喪失了在機械強度性能方面的優勢。

2.增強組分與高分子基體的協同效應

通常,具有減摩性的高分子材料與金屬材料配副使用時,顯示出良好的摩擦損行為,但是高分子材料存在著屈服強度低、抗蠕變、耐高溫能力差、導熱性不良以及熱膨脹系數大等缺陷。通過加入某些增強組分并通過合理的配方設計,可以改善某一方面或幾方面的性能要求。配方組分的選擇應通過模擬試驗確定,特別需要關注填充組分與高分子基體的復合協同作用。例如,在聚四氟乙烯中加入15%~25%的玻纖可以使耐磨性能提高100~1000倍;但是,同樣的玻纖填充到尼龍中也作為軸承材料,卻容易發生卡軸事故。總起來說,不同的高分子基體、不同的環境條件、不同的潤滑狀況,對于減摩和增強填充材料都有一個最佳組合的問題。高分子基體和填充組分之間的協同效應好,與工況條件相匹配,材料的摩擦損特性和綜合性能就越好。

高分子納米復合材料的摩擦學行為

20世紀80年代開始,人們發現當材料的特征尺度降低到納米尺度時,會出現明顯不同于宏觀尺度下常規材料的一些全新的性質,形成了一個全新的研究領域;而在摩擦學領域,納米材料也逐漸得到了廣泛的研究,部分成果也已經得到應用。

納米效應與納米摩擦學

納米材料在電學、磁學、光學、熱學、化學和力學性能等方面表現出常規材料所不具備的奇異性能。主要是由于其有如下四個效應:①表面效應;②小尺寸效應;③量子尺寸效應;④宏觀量子隧道效應。

納米摩擦學或稱微觀摩擦學或分子摩擦學,是在原子、分子尺度上研究摩擦面上的行為、損傷及其對策。納米摩擦學狹義上主要研究內容包括納米薄膜潤滑和微觀摩擦磨損機理,以及表面和界面分子工程,即通過材料表面微觀改性或分子涂層,或者含在納米尺度上對摩擦表面改性和排布原子,發展表面和界面分子工程;從廣義上來說,只要摩擦學系統中涉及納米級尺度的問題都可歸屬于納米摩擦學的研究范疇。

5.6.2典型納米填料改性高分子材料的摩擦磨損性能

20世紀90年代初期,中科院蘭州化物所的科研人員較早進行了優良性能的高分子納米復合材料摩擦學的研究工作,考察了加入Si?N?納米顆粒的PEEK[34]的摩擦學性能;材料的摩擦系數隨納米顆粒含量的增加而下降,而磨損率隨納米顆粒含量的增加先下降而后上升。載荷增大后,摩擦系數磨損率都明顯降低。進入21世紀,聚四氟乙烯納米復合材料的摩擦學行為才有正面結果的報道,人們首先對ZnO納米顆粒改性PTFE摩擦學性能進行研究[35];結果表明,隨著摩擦速度的增加,改性后的PTFE摩擦系數有所降低;隨載荷的增加,其摩擦數明顯下降。就PI納米復合材料來說,隨著Al?O?納米顆粒含量的提高,材料的摩擦系數磨損失重均呈現先降低后增加的趨勢[36];而PI中加入納米LaF?顆粒(37),其耐磨性的改變也存在類似關系。

人們對高分子納米復合材料的摩擦學機理進行了討論,認為[34-36]:在摩擦損過程中,PEEKPTFE、PI等會在對偶件表面形成一層轉移膜,納米顆粒加入后,這層轉移膜的強度增加,高強度的轉移膜使得磨損表面光滑,磨屑少,保證摩擦副具有更低的摩擦系數磨損率;但過量納米顆粒的加入,將可能導致界面強度的降低而使磨損率升高。

其他比較典型的高分子基體材料還有環氧樹脂和尼龍等。就環氧樹脂與碳鋼配副來說,經Si?N?納米顆粒改性后,系統的摩擦系數與環氧樹脂的磨損率均明顯下降[38];存在一個Si?N?納米顆粒的合適添加比例使摩擦磨損性能,但磨損性能與摩擦性能的最佳加人量并不一致。就尼龍材料來說,添加SiC納米顆粒后,可使尼龍66的耐磨性提高,但過量SiC納米顆粒加入(>10%),也會導致磨損增加[39]。

另一方面,許多文獻對常規微米級填料與納米填料的協同作用進行了探索。在石墨填充后PTFE材料,再加入納米顆粒后,材料的摩擦磨性能有可進一步得到改善,如有人[40]對SiO?、TiO?等納米顆粒與石墨混合填充PTFE復合材料的摩磨損性能進行了研究;結果表明,由于填充材料的支承作用和石墨的潤滑作用,形成了具有高強度減摩特性的轉移膜,材料的磨損性能顯著優于單一加入納米顆粒條件下,其中以納米SiO?和石墨共同填PTFE復合材料的磨損質量損失最小。 ,20世紀90年代出現的一維納米顆粒-碳納米管對高分子材料摩擦學行為影響也有許多報道。碳納米管加入到PTFE材料中后,改變了PTFE的微觀結構,阻礙了PTFE摩擦過程中纖維狀結構的大面積破壞,極大地提高了PTFE復合材料的耐磨性能并使其具有一定的自潤滑性[41],隨著其填充量的增加,PTFE基復合材料的摩擦系數磨損率呈下降的趨勢。當碳納米管在PTFE基復合材料中的體積分數為15%~20%,碳納米管/PTFE復合材料的磨損率僅為純PTFE1/240和1/290;而含有15%~20%石墨的相應的復合材料磨損率只是純PTFE1/50(見圖5-5)


高分子常規復合材料的摩擦磨損行為


納米填料與微米填料摩擦磨損行為的比較

用納米復合材料代替微米復合材料的有效性在許多實驗室得到驗證。Rong等比較了微米TiO?和納米TiO?(10nm)對環氧耐磨性的影響。研究結果表明,TiO?納米粒子能夠顯著地降低環氧的磨損率,但是微米TiO?粒子做不到。Ng等人在更早的報道中也有類似的結論。Yu及其合作者研究了微米銅微粒以及納米銅微粒填充的聚甲醛(POM)復合材料的摩擦學性能。微米銅改性POM復合材料的磨損特征是擦傷和黏著,而納米銅的是塑性變形,因此磨耗量降低。XueWang發現與微米SiC相比,納米SiC可以使聚醚醚酮(PEEK)磨損降得更低。這是因為在碳鋼環和納米SiC填充的復合材料摩擦塊的配合面上,可形成薄而均一、黏性的遷移膜。

因為納米填料可以賦予聚合物特殊的功能,而微米復合材料做不到這些,所以納米復合材料成為耐磨材料和潤滑材料家族的重要一員。這是一個既有理論意義又有實際意義的課題。要作為摩擦學應用材料,高分子納米復合材料必須同時滿4個相互關聯的條件:組分選擇、低成本工藝、制造和性能。人們對這幾方面及其之間的相互依賴性的認識還處于初級階段,并不了解。但是,復合材料的最終應用要求將催生出許多新的觀點和看法。


北京中航時代儀器設備有限公司
  • 聯系人:石磊
  • 地址:北京市房山區經濟技術開發區1號
  • 郵箱:zhsdyq@163.com
  • 傳真:86-010-80224846
關注我們

歡迎您關注我們的微信公眾號了解更多信息

掃一掃
關注我們
版權所有 © 2025 北京中航時代儀器設備有限公司 All Rights Reserved    備案號:京ICP備14029093號-1    sitemap.xml
管理登陸    技術支持:化工儀器網    
欧美一区二区三区……_欧美xxxx18性欧美_国产91热爆ts人妖在线_97超视频免费观看_黄色成人在线免费_97av视频在线_精品亚洲国产成av人片传媒_最新的欧美黄色_国产精品88a∨_日韩成人中文字幕在线观看_成人欧美在线视频_色综合91久久精品中文字幕_国产精品高精视频免费_亚洲一区二区三区香蕉_国产精品女视频_91av在线播放视频
<ul id="o60sq"><dfn id="o60sq"></dfn></ul>
<strike id="o60sq"><menu id="o60sq"></menu></strike><blockquote id="o60sq"></blockquote>
  • 
    
  • 亚洲高清在线精品| 欧美揉bbbbb揉bbbbb| 亚洲韩国日本中文字幕| 国产精品一区二区久激情瑜伽| 国产精品久久久久久av下载红粉| 国产欧美婷婷中文| 欧美日韩精品免费在线观看视频| 久久不见久久见免费视频1| 欧美日韩免费一区二区三区视频| 亚洲国产视频一区二区| 麻豆成人在线播放| 欧美黄色小视频| 久久免费视频在线观看| 亚洲午夜影视影院在线观看| 国产精品剧情在线亚洲| 国产精品免费视频观看| 久久久精品一区| 久久免费精品视频| 欧美激情综合在线| 国产一本一道久久香蕉| 欧美在线视频导航| 亚洲制服av| 欧美成人伊人久久综合网| 久久久久久久久久久久久久一区| 久久一区二区三区国产精品| 欧美日韩国产一区精品一区| 午夜精品美女久久久久av福利| 亚洲深夜福利在线| 国产精品久久久久毛片软件| 欧美伦理91| 亚洲美女淫视频| 亚洲人成网站999久久久综合| 欧美在线一区二区三区| 欧美精品1区2区3区| 伊人春色精品| 韩国精品一区二区三区| 亚洲精品一区在线观看香蕉| 美女视频一区免费观看| 另类欧美日韩国产在线| 亚洲在线观看免费视频| 欧美日韩久久| 亚洲国产精品热久久| 亚洲电影在线免费观看| 国产三级精品在线不卡| 欧美黑人多人双交| 亚洲三级免费电影| 午夜精品国产更新| 日韩午夜在线| 狼人社综合社区| 一区二区三区欧美成人| 亚洲精品一区久久久久久| 久久久久久久久久码影片| 国产视频精品免费播放| 国内精品久久久久影院色| 一区二区三区我不卡| 国产一区二区三区日韩欧美| 国产欧美日韩亚洲精品| 国产日本欧美一区二区| 校园春色国产精品| 国产一区二区三区久久久久久久久| 国产精品免费视频观看| 欧美一区视频在线| 久久一本综合频道| 国产精品久久久久久久9999| 亚洲精品色图| 国产亚洲精品一区二555| 日韩小视频在线观看专区| 一区一区视频| 欧美成人中文字幕在线| 亚洲国产精品久久久久秋霞影院| 亚洲桃花岛网站| 欧美精品999| 国产麻豆日韩欧美久久| 亚洲人成亚洲人成在线观看| 久久久999精品免费| 麻豆av一区二区三区久久| 狠狠色丁香婷婷综合久久片| 一区免费视频| 国产女主播视频一区二区| 欧美视频一二三区| 国产精品有限公司| 亚洲精品欧美激情| 欧美精品18| 亚洲九九九在线观看| 国产精品乱码人人做人人爱| 国产精品久久久久久久久久三级| 欧美激情女人20p| 久久国产一区二区三区| 国产精品久久久久国产a级| 国产日韩高清一区二区三区在线| 欧美日韩1区2区| 欧美日韩在线免费视频| 欧美无乱码久久久免费午夜一区| 樱桃成人精品视频在线播放| 久久一日本道色综合久久| 日韩网站在线看片你懂的| 国产精品欧美一区喷水| 久久精品国产亚洲5555| 国产精品草莓在线免费观看| 国产精品夜夜嗨| 黄色亚洲大片免费在线观看| 国产精品久久久久国产精品日日| 亚洲欧洲精品一区二区精品久久久| 欧美片第一页| 国产日产欧美精品| 久久久久五月天| 免费不卡亚洲欧美| 国产精品jizz在线观看美国| 国产精品拍天天在线| 欧美成人午夜视频| 久久看片网站| 99在线|亚洲一区二区| 一区二区三区四区精品| 国内精品伊人久久久久av影院| 国产亚洲精品高潮| 欧美视频在线免费看| 亚洲一区不卡| 国产精品热久久久久夜色精品三区| 国产精品一区在线播放| 在线播放日韩专区| 欧美高清hd18日本| 亚洲午夜视频在线观看| 亚洲精品久久嫩草网站秘色| 欧美成人免费网站| 国产一区二区三区久久| 欧美日韩一区国产| 亚洲一区二区三区色| 亚洲一级黄色av| 久久视频在线免费观看| 国产精品高精视频免费| 亚洲精品1区2区| 亚洲开发第一视频在线播放| 一本色道久久综合亚洲二区三区| 欧美黄免费看| 亚洲欧美日本另类| 一卡二卡3卡四卡高清精品视频| 性刺激综合网| 国产视频在线一区二区| 午夜一区二区三视频在线观看| 亚洲观看高清完整版在线观看| 亚洲视频在线一区观看| 国产麻豆视频精品| 国产精品超碰97尤物18| 亚洲国产高清视频| 欧美大片在线看| 国产一区二区精品丝袜| 久久精品国产欧美激情| 亚洲日本aⅴ片在线观看香蕉| 一本色道婷婷久久欧美| 91久久精品国产91性色tv| 亚洲国产精品传媒在线观看| 欧美激情精品| 欧美丰满高潮xxxx喷水动漫| 欧美精品18videos性欧美| 久久久一本精品99久久精品66| 久久精视频免费在线久久完整在线看| 久久伊人精品天天| 免费久久久一本精品久久区| 久久gogo国模裸体人体| 亚洲女人小视频在线观看| 亚洲国产日韩欧美综合久久| 欧美激情中文字幕一区二区| 久久久国际精品| 欧美三级第一页| 亚洲在线观看视频| 一区免费观看视频| 久久综合国产精品台湾中文娱乐网| 国产日韩欧美在线播放| 国产亚洲精品bt天堂精选| 韩国三级在线一区| 亚洲国产成人精品久久久国产成人一区| 欧美日韩免费一区二区三区| 欧美呦呦网站| 久久久999精品免费| 午夜精品福利一区二区蜜股av| 精品999成人| 欧美成人免费全部| 欧美精品在线一区二区三区| 国产一区二区三区四区在线观看| 国产一区二区视频在线观看| aaa亚洲精品一二三区| 国产伦精品一区二区三区免费| 国产精品一区二区三区成人| 久久综合色88| 尤物精品国产第一福利三区| 欧美色另类天堂2015| 亚洲精品乱码久久久久久蜜桃91| 亚洲乱亚洲高清| 欧美日韩视频一区二区| 国产精品麻豆欧美日韩ww| 久久久久国色av免费观看性色| 国产一区二区按摩在线观看| 久久av红桃一区二区小说| 精品999网站| 国产夜色精品一区二区av| 欧美日韩一卡| 国产精品99久久99久久久二8| 在线精品国精品国产尤物884a| 国产精品电影网站| 在线亚洲自拍| 国内精品久久久久影院优| 亚洲第一福利社区| 欧美日韩免费网站| 一区免费在线| 欧美日韩国产欧美日美国产精品| 久久久久亚洲综合| ●精品国产综合乱码久久久久| 美国十次了思思久久精品导航| 欧美诱惑福利视频| 伊人精品成人久久综合软件| 免费在线观看成人av| 一区二区三区在线免费观看| 国产欧美一区二区三区另类精品| 国产情人节一区| 亚洲国内欧美| 欧美精品久久天天躁| 99精品视频免费在线观看| 国产一区二区三区精品久久久| 亚洲欧美久久| 一区二区三区日韩在线观看| 女生裸体视频一区二区三区| 午夜精彩国产免费不卡不顿大片| 日韩天堂av| 欧美一区二区三区免费观看| 欧美成人性生活| 亚洲肉体裸体xxxx137| 国产自产v一区二区三区c| 亚洲国产精品成人va在线观看| 欧美在线观看网站| 在线电影一区| 欧美一级片一区| 欧美日韩中文字幕| 美女国产一区| 欧美日韩在线影院| 亚洲美女福利视频网站| 国产一区二区三区四区老人| 亚洲精品一区二区三区福利| 久久久久成人精品| 国产午夜精品久久久久久久| 国产精品日韩二区| 久久这里只有精品视频首页| 国产精品入口日韩视频大尺度| 激情91久久| 欧美丝袜第一区| 国模精品娜娜一二三区| 欧美日韩一区二区在线| 欧美日韩国产成人精品| 欧美中文在线字幕| 亚洲视频国产视频| 欧美日韩一区国产| 久久国产欧美精品| 宅男噜噜噜66国产日韩在线观看| 午夜亚洲影视| 免费高清在线一区| 国产精品亚洲综合天堂夜夜| 亚洲精美视频| 亚洲日产国产精品| 性欧美xxxx视频在线观看| 欧美精品福利视频| 久久久久久久久久码影片| 99国产精品国产精品毛片| 亚洲影院在线| 欧美精品日日鲁夜夜添| 1204国产成人精品视频| 美女黄色成人网| 国产精品二区二区三区| 亚洲激情国产精品| 欧美日产在线观看| 国产亚洲欧美一级| 欧美激情91| 欧美日韩亚洲一区二区| 免费在线亚洲| 亚洲精品国产精品国自产在线| 国产精品分类| 亚洲毛片av在线| 欧美午夜不卡视频| 国模私拍视频一区| 国产一区二区三区四区hd| 午夜精品久久久久久久白皮肤| 一区二区三区欧美在线观看| 国产精品高潮粉嫩av| 亚洲激情婷婷| 亚洲人成在线免费观看| 亚洲精品免费一区二区三区| 一区福利视频| 国产欧美短视频| 国产精品mv在线观看| 亚洲欧洲视频在线| 性欧美暴力猛交69hd| 亚洲福利精品| 激情av一区| 欧美一区影院| 久久久久一区| 制服诱惑一区二区| 亚洲电影免费观看高清完整版| 在线视频欧美一区| 欧美日韩高清一区| 亚洲黄一区二区| 国产精品久久一级| 国产精品卡一卡二| 欧美午夜精品久久久久久久| 欧美日韩中文字幕在线| 亚洲国产精品成人| 老司机一区二区三区| 亚洲人成毛片在线播放| 国产精品国产三级欧美二区| 亚洲成色www8888| 蜜臀久久久99精品久久久久久| 亚洲黄色一区二区三区| 狠狠色2019综合网| 永久91嫩草亚洲精品人人| 久久精品系列| 亚洲福利视频一区二区| 国产乱码精品1区2区3区| 欧美高清视频一区| 毛片精品免费在线观看| 欧美日韩精品一区二区三区四区| 校园激情久久| 亚洲国产高清aⅴ视频| 亚洲一二三区精品| 欧美日韩www| 在线观看不卡av| 久久免费视频在线| 亚洲福利久久| 国产精品久久777777毛茸茸| 亚洲激情中文1区| 国产亚洲一二三区| 亚洲激情网站免费观看|